Lidské tělo


Neuron

V nervové soustavě je nebo nervová elektricky excitovatelná , která přes neuronovou síť vysílá elektrické signály zvané akční potenciály. Neurony komunikují s jinými buňkami prostřednictvím synapsí, což jsou speciální spojení, která používají nepatrná množství chemických ů k přenosu elektrického signálu z presynaptického neuronu do cílové buňky přes synaptickou mezeru.

Neurony jsou hlavními složkami nervové tkáně u všech zvířat kromě houbovců a vločkovců. Rostliny a houby nemají nervové buňky. Molekulární důkazy naznačují, že schopnost generovat elektrické signály se v evoluci poprvé objevila asi před 700 až 800 miliony let. Předchůdci ů byly sekreční buňky. jako základní jednotku nervové tkáně popsal roku 1835 Jan Evangelista Purkyně, i když někdy je tento objev připisován Španělovi Cajalovi, který vysvětlil jeho funkci.

Neurony jsou obvykle rozděleny do tří typů na základě jejich funkce. reagují na podněty, jako je dotyk, nebo , a vysílají signály do míchy nebo mozku. přijímají signály z mozku a míchy. Interneurony spojují neurony s jinými neurony ve stejné oblasti mozku nebo míchy. Když je více ů funkčně spojeno dohromady, tvoří to, co se nazývá .

Stavba neuronu

Tělo neuronu

Schematické znázornění neuronu a jeho funkcí

Tělo neuronu (perikaryon, neurocyt, soma) je ta část nervové buňky, ve které je uloženo jádro. Velikost perikaryonu se pohybuje od 6 μm (malé zrnité buňky kůry mozečku) do 100 μm (velké pyramidové neurony motorických oblastí mozkové kůry). Jádro je poměrně velké, kulovité nebo oválné, bývá v něm zpravidla jedno velké jadérko. V cytoplasmě těla (neuroplasma) jsou a struktury shodné s organelovou výbavou ostatních somatických buněk, zvláště vyniká granulární endoplasmatické retikulum, které v perikaryu tvoří dynamickou strukturu nazývanou Nisslova tigroidní substance, a , který byl poprvé popsán právě v nervové buňce. V těle neuronu, stejně tak i v jeho výběžcích, se nacházejí početné . Ve všech neuronech jsou lysosomy, které mohou obsahovat zrna (granula) ů, lipofuchsinu a neuromelaninu.

Přestože se předpokládá, že plně diferencované neurony nemají schopnost mitotického dělení, v jejich cytoplasmě byly prokázány centrioly. V těle i výběžcích neuronu jsou specializovaná intermediální filamenta, neurofilamenta, a , nazývané neurotubuly. Agregací neurofilament a neurotubulů vznikají neurofibrily, které se v histologických preparátech znázorňují impregnací těžkými kovy. Po mikrotubulech jsou ke vzdáleným zakončením dopravovány ální granule nesoucí mediátorovou kódující proteiny řebné v nervovém zakončení; i když obsahují faktory řebné pro překlad , překlad je po dobu transportu zastaven. ální granule hrají roli v regeneraci ů a poruchy v transportu jsou spojeny s álními poruchami.

Výběžky neuronu

Výběžky ů jsou dvou typů:

  • krátké – tzv. dendrity a jsou dostředivé
  • dlouhé – tzv. neurity neboli axony a jsou odstředivé

Výběžky jsou integrální součástí neuronu. Při zničení neurocytu výběžky degenerují a zanikají. Je-li výběžek přerušen, ta část, která ztratí kontakt s neurocytem zaniká (Wallerova degenerace). Pahýl výběžku je schopen se regenerovat (Wallerova ), proto je i při poškození nervu šance, že se jeho funkce časem plně obnoví.

Dendrity mají stejnou strukturu a neuroplasmy jako tělo neuronu. V místě odstupu od těla jsou tlusté, postupně se větví. Dendrity jsou většinou krátké, větví se v blízkosti neurocytu a nemají myelinovou pochvu. Na povrchu ů bývají přítomné dendritické trny.

je vždy pouze jeden. V místě jeho odstupu na těle neuronu není patrná Nisslova substance, tato část těla se nazývá odstupový konus axonu. V cytoplasmě axonu (axoplasma) jsou podélně probíhající neurofilamenta, vyztužující .

Může se větvit a vytvářet kolaterály. Konečné rozdělení axonu se nazývá telodendron (telodendrie). Na distálním konci axonu je axoterminála, specializovaná sekreční struktura, která při podráždění uvolňuje neurotransmitery do synaptické štěrbiny.

Axony jsou většinou obaleny myelinovou pochvou. Výjimku tvoří neurony CNS, kde je asi 40 % ů bez obalů (holá vlákna). obalený pochvou se nazývá . je vytvářena gliovými buňkami, Schwannovými buňkami na periferních nervech a oligodendrogliemi v CNS. Myelinová vytvářena Schwannovými buňkami není souvislá, vytváří asi 1mm dlouhé segmenty, internodia, členěné Ranvierovými zářezy. V místech zářezu je na membráně axonu velké množství elektricky řízených iontových kanálů.

Může být velmi dlouhý, i několik metrů u velkých zvířat. U člověka je nejdelší asi 1 m dlouhý. Vede od páteře až po konečky ů na nohou.

Rozdělení ů

Podle počtu a způsobu odstupu výběžků rozdělujeme neurony na několik typů:

  • unipolární neurony
  • bipolární neurony
  • pseudounipolární neurony
  • multipolární neurony

Unipolární neurony mají pouze jeden výběžek, a to . je přeměněn na specializované zakončení (např. tyčinku), které nepřijímá aferenci od jiného neuronu (proto se nenazývá dendritem), ale samo vzruch tvoří na základě svého podráždění přijatou informací (např. světelným zářením o vhodné vlnové délce). Unipolární jsou – primární smyslové buňky, a čípky .

Bipolární neurony jsou opatřené jedním neuritem a jedním dendritem, které obvykle odstupují na opačných pólech buněčného těla. Je to například druhý zrakové dráhy nebo .

Pseudounipolární je zvláštní typ bipolárního neuronu. V blízkosti těla a splývají v jediný výběžek, dendraxon. Ten se po různě dlouhém průběhu ve tvaru písmene T opět rozděluje na výběžky dva. Pseudounipolární neurony jsou typické pro spinální a mozkových ů.

Multipolární neurony jsou nejpočetnější. Z buněčného těla vystupuje několik ů a jeden , takže má hvězdicovitý tvar. Multipolární neurony jsou „typické“ neurony.

Neurony můžeme rozdělit také podle délky axonu:

  • Golgiho I.typ – neurony s dlouhým neuritem
  • Golgiho II. typ – neurony s krátkým neuritem, který se rozvětvuje v blízkosti perikarya

Z hlediska funkce se neurony dělí na tři skupiny:

Funkce neuronu

ální membrána

Neurony jsou jedinečné v tom, že dokážou rychle přenášet informaci ve formě podráždění. Klíčovou strukturou k přenosu podráždění je specializovaná cytoplasmatická membrána neuronu, ální membrána.

V ální membráně se nachází množství různých typů iontových kanálů. Na membráně ů a těla, tam, kde nasedají , převažují iontové kanály řízené chemicky, jinak převažují kanály řízené elektricky.

Za fyziologických podmínek je ve všech buňkách jiná koncentrace různých iontů než v mezibuněčném prostoru. Velké množství energie, která se uvolní při buněčném katabolismu, je použité k udržení tohoto stavu (ATPázová pumpa). U nervových buněk je nerovnováha mezi ionty uvnitř a vně buňky taková, že na membráně vzniká , činící asi –50 až –90 mV. Vnitřní povrch membrány nese záporný náboj, vnější povrch má náboj kladný.

Zdrojem potenciálu je náboj nesený ionty, zejména K+, Na+, Cl a anionty bílkovin. Ionty mohou volně přecházet přes membránu, iontovými kanály, což jsou místa pro jejich průchod, pronikají dovnitř a vně buňky mnohem rychleji. Propustnost iontových kanálů pro jednotlivé ionty je významně ovlivňována koncentrací intracelulárního Ca+.

V klidu je proto na membráně , membrána je tedy polarizována.

Schematický graf časového průběhu vzruchu

Membrána, na které převažují chemicky řízené iontové kanály (tj. postsynaptická membrána), je drážditelná chemickými podněty, především mediátorem. Odpověď na toto podráždění může být dvojí:

  • Depolarizace – zvýšení permeability pro sodné, draselné a chloridové ionty
  • Hyperpolarizace – zvýšení permeability pro draselné a chloridové ionty

To způsobí lokální změnu membránového potenciálu (místní podráždění) membrány. Ještě ale nedochází k šíření podráždění. Depolarizace membrány působí excitačně, hyperpolarizace naopak inhibičně. Chemicky řízené iontové kanály jsou rozhodující pro vzrušivost neuronu, díky nim dochází k modulaci signálu.

Membrána, na které převažují elektricky řízené iontové kanály, reaguje na podráždění podle zákona „vše nebo nic“. Buď reaguje vzruchem, nebo ne, a pokud ano, tak s nejvyšší možnou intenzitou. Ke vzniku vzruchu musí dojít k místní depolarizaci membrány, a náhlému rychlému poklesu membránového potenciálu. Prahová hodnota, při které dojde k otevření elektricky řízených iontových kanálů a ke vzniku vzruchu je –55 mV. Odstup od šumu neuronu je 3 až 30 dB.

Rychlost šíření akčního potenciálu závisí na obalech nervového vlákna – nemyelinizovaná vlákna vedou vzruchy rychlostí max. 2 m/s, naproti tomu tlustá myelinizovaná vlákna dokážou vést vzruchy rychlostí až 120 m/s.

Vlna depolarizace membrány, která nastává otevřením iontových kanálů, šířící se postupně po povrchu neuronu, se nazývá a je podstatou přenosu informací neurony.

je , které ničí gliové buňky vytvářející pochvu. Tím je narušeno vedení vzruchu.

Neurony spolu komunikují pomocí vysoce specializovaných struktur zvaných . šířící se po povrchu neuronu způsobí uvolnění specifických látek, mediátorů (ů), do synaptické štěrbiny, prostoru mezi dvěma neurony. Mediátor způsobí podráždění chemicky řízených iontových kanálů na membráně druhého neuronu, může tak dojít ke vzniku dalšího akčního potenciálu.

Rekordní délka

U velryb a sauropodních dinosaurů mohly axony ů dosáhnout až milionkrát větší délky než samotné tělo buňky – v některých případech mohly být neurony dlouhé i přes 30 metrů.